科研破解细菌耐药性密码促养殖产业提质增
据世界卫生组织(WHO)统计,全球抗菌药物约50%用于养殖业,我国是全世界动物抗菌药物生产和使用量最多的国家之一。而解决细菌耐药性问题尤其是畜禽养殖业中的细菌耐药性问题已成为世界性难题。
记者从科技部中国农村技术开发中心(以下简称农村中心)获悉,国家重点研发计划“畜禽重大疫病防控与高效安全养殖综合技术研发”重点专项项目“畜禽病原耐药性的产生、传播与防控技术及应用”取得重大突破,项目发现了可转移的耐药机制,为后续成果奠定了基础,并且支撑了禁抗政策出台;创制的泰地罗新、博普碱等4个国家二类新兽药,实现了我国自主研发产品代替进口产品,并出口国际的目标;开发的蛋鸡细菌病系统防控与安全蛋品生产关键技术近3年为相关企业实现了56.59亿元的销售额增长。
同时,项目推动了我国养殖业禁用多黏菌素政策的实施,跟踪研究发现我国动物和人群中的多黏菌素耐药性显著下降。
?细菌耐药性复杂多变
抗菌药物是保障动物健康养殖,满足人类对动物源性食品需求的关键,然而长期不合理的使用会造成细菌对这些药物产生抵抗而使药物失效,即人们所说的细菌耐药性。畜禽养殖业已成为耐药细菌的储库,并存在传播给人类的巨大风险。年,农业部(现农业农村部)颁布了《全国遏制动物源细菌耐药行动计划(—年)》;年4月15日起即将施行的《中华人民共和国生物安全法》也将应对微生物耐药威胁提升到国家生物安全的战略高度。
早在年诺贝尔颁奖典礼上,青霉素发现者亚历山大·弗莱明便向众人发出警告“青霉素将来很可能会由于细菌耐药而变得无效”。正是细菌这种复杂多变的特性让科研人员难以完全掌握它们逃避药物压力的进化规律,更难以简单抓住它们的“命脉”,设计“一劳永逸”的药物。
“细菌是一个十分狡猾的病原。”“畜禽药物的代谢转归和耐药性形成机制研究”项目负责人、中国农业大学动物医学院教授汪洋解释,尽管它是单细胞生物、结构很简单,但是它的进化速度特别快,适应外界压力(如抗菌药物)的能力特别强,比如许多药物在上市之初即有相应的耐药细菌产生,随着抗菌药物的大量使用,耐药率也随之越来越高,以致于药物研发的速度远远不及细菌耐药性产生的速度。
“因而本项目的难点在于如何更全面地认知细菌在产生和传播耐药性方面的规律,以便在此基础上设计更好的药物或者提出有效的控制策略。”汪洋说。
“畜禽病原耐药性的产生、传播与防控技术及应用”项目延续了之前中国工程院院士、中国农业大学动物医学院院长沈建忠教授主持的项目计划“畜禽重要病原菌抗生素耐药性形成、传播与控制的基础研究”,响应国家重大战略需求持续性开展耐药性基础研究,分别设置了“畜禽药物的代谢转归和耐药性形成机制研究”以及“畜禽重要病原耐药性监测与控制技术研究”两个耐药性相关项目。
“首先我们想通过这个项目发现畜禽养殖业中有哪些耐药细菌;其次了解这些来自动物的耐药细菌为什么会出现,是怎么传播的,会不会传播给人类,有什么危害等问题。通过深入理解耐药细菌本身的特性,找到可以遏制它们发生发展的手段和途径;继而开发或制定可以防控它们产生和扩散的技术或策略,促进畜禽养殖业科学合理用药,最终达到提升畜禽养殖效益、降低环境污染及保障动物和人类健康的目的。”汪洋表示。
?在新机制、传播、控制方面取得突破
在耐药新机制方面,继年首次揭示了可转移多黏菌素耐药基因mcr-1后,中国农业大学和华南农业大学团队又先后发现可转移替加环素高水平耐药基因tet(X3)、tet(X4),打破了原先认为替加环素耐药性不可转移的认知,也警示了这一临床重要药物的使用风险。
在细菌耐药性传播方面,沈建忠团队揭示了mcr-1阳性大肠杆菌在健康人群肠道内的高流行率与动物源性食品摄入的强相关性,丰富了该耐药菌传播的途径,提示水产养殖及水产食品在传播多黏菌素耐药性方面需要更多的
转载请注明:http://www.iparentsbook.com/syjg/8766.html